Primer reporte de genes qnrB19 y aac(6’)-Ib-cr en aislados de Escherichia coli resistente a ciprofloxacino en Ecuador

Autores/as

Palabras clave:

qnrB, aac(6’)-Ib-cr, ciprofloxacina, resistencia, Echericha coli, Ecuador

Resumen

Introducción: la Escherichia coli es una de las causas comunes de infecciones del tracto urinario. Objetivo: demostrar el perfil de resistencia antimicrobiana mediada por PMQR transferibles (qnrA, qnrB, qnrC, qnrD, qnrS, qnrVC y aac(6’)-Ib-cr) y la relación genética mediante análisis de campos pulsados (PFGE) en aislamientos de Escherichia coli uropatogénica recuperados de pacientes comunitarios y hospitalarios en Quito–Ecuador. Material y método: Se realizó un estudio correlacionar, descriptivo-transversal para demostrar el perfil de resistencia antimicrobiana mediada por PMQR transferibles (qnrA, qnrB, qnrC, qnrD, qnrS, qnrVC y aac(6’)-Ib-cr) y la relación genética mediante análisis de campos pulsados en aislamientos de Escherichia coli uropatogénica. El universo de la investigación estuvo constituido por 156 aislamientos no duplicados de Escherichia coli recuperados de muestras de orina de todo el año 2011, que se encontraban conservados en el laboratorio de bacteriología del Instituto Nacional de Salud Pública e Investigación Dr. Leopoldo Izquieta Pérez, en la ciudad de Quito; se identificó por técnicas bioquímicas clásicas. Resultados: se encontró 50,6 % resistentes a ciprofloxacina, el análisis genético, 54,4 % fueron positivos para el gen aac(6´)-Ib-cr, el alelo qnrB19 estuvo presente en el 100% de las cepas analizadas; mientras los genes qnrA, qnrC, qnrD y qnrS no fueron detectados. La co-oexpresión de los genes qnrB19 y aac(6’)-Ib-cr ocurrió en el 36,7 % de los aislamientos con altos niveles de resistencia. Conclusiones: la diseminación de determinantes de resistencia a ciprofloxacino, se asocia con el aumento de resistencia a Escherichia coli.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Guzmán Natalia, García-Perdomo Herney Andrés. Novedades en el diagnóstico y tratamiento de la infección de tracto urinario en adultos. Revista mexicana de urología. [Internet], 2020; [Citado 12 de marzo 2024]; 80(1): e06. https://doi.org/10.48193/rmu.v80i1.546

Malpartida Ampudia MK. Infección del tracto urinario no complicada. Rev.méd.sinerg. [Internet]. 2020. [Citado 12 de marzo 2024]; 5(3):e382. Disponible en: https://revistamedicasinergia.com/index.php/rms/article/view/382

Bush N.G, Diez-Santos I, Abbott L.R, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules. [Internet], 2020. [Citado 12 de marzo 2024]; 25(23), 5662. DOI: https://doi.org/10.3390/molecules25235662.

Kariuki K, Diakhate M.M, Musembi S, Tomberg-Balanger SN, Rwigi D, Mutuma T. et al. Plasmid-mediated quinolone resistance genes detected in Ciprofloxacin non-susceptible Escherichia coli and Klebsiella isolated from children under five years at hospital discharge, Kenya. BMC Microbiol. [Internet], 2023. [Citado 12 de marzo 2024]; 23(129). DOI: https://doi.org/10.1186/s12866-023-02849-2.

Vázquez X, Fernández J, Hernáez S, Rodicio R, Rodicio M.R. Plasmid-Mediated Quinolone Resistance (PMQR) in Two Clinical Strains of Salmonella enterica Serovar Corvallis. Microorganisms. [Internet], 2022. [Citado 12 de marzo 2024]; 10(3), pag 579. DOI: https://doi.org/10.3390/microorganisms10030579.

García J, Martínez D, Caña L, González D, Rodríguez L, Rodulfo H, et al. Genes qnr en Enterobacteriaceae aisladas en un hospital de Venezuela. Rev. chil. infectol. [Internet]. 2018 Abr [citado 2024 Jun 02]; 35(2): 147-154. DOI: http://dx.doi.org/10.4067/s0716-10182018000200147.

Zubyk HL, Wright GD. CrpP Is Not a Fluoroquinolone-Inactivating Enzyme. Antimicrob Agents.Chemother. [Internet], 2021 Junio. [Citado 11 mayo 2024]; 65(8). 1128/aac.00773-21. DOI: https://doi.org/10.1128/aac.00773-21.

Rocha K, Magallon J, Reeves C, Phan K, Vu P. Inhibition of Aminoglycoside 6’-N-Acetyltransferase Type Ib [Aac(6′)-Ib]: Structure-Activity Relationship of Substituted[Aac(6′)-Ib]: Structure-Activity Relationship of Substituted Pyrrolidine Pentamine Derivatives as Inhibitors. Nova Southeastern University, NSUWorks. [Internet], 2021 Agosto. [Citado 11 mayo 2024]; Mathematics Faculty Articles. 313. Disponible en: https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1313&context=math_facarticles.

Winn W.C, Allen S.D. Janda W.M, Koneman E.W. Procop G, Schreckenberger P. Color Atlas an Textbook of Diagnostic Microbiology. VL-JO, Philadelphia Lippincott-Raven Publishers ER. Woods, G.L. PY. 2005, January.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Laboratory Standards Institute. 30th Edition. [Internet], 2020. 950 West Valley Road, Suite 2500. [Citado 11 mayo 2024]. Disponible en: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf.

Caméléna F, Birgy A, Smail Y, Courroux C, Mariani-Kurkdjian P, Le Hello S, et all. Rapid and simple universal Escherichia coli genotyping method based on multiple-locus variable-number tandem-repeat analysis using single-tube multiplex PCR and standard gel electrophoresis. Bidet P. Appl Environ Microbiol. [Internet], 2019. [Citado 11 mayo 2024]; 85(6):e02812-18. DOI: https://doi.org/10.1128/AEM.

Esmaeel NE, Gerges MA, Hosny TA, Ali AR. Detection of Chromosomal and Plasmid-Mediated Quinolone Resistance Among Escherichia coli Isolated from Urinary Tract Infection Cases. Zagazig University Hospitals, Egypt, Infection and Drug Resistance, Manar G Gebriel. [Internet], 2020, Febrery. [Citado 11 mayo 2024]; 13(310), 413-421, DOI: https://doi.org/10.2147/IDR.S240013.

Samer A. MH. Al-Hilali, Zainab Jaber Hadi, Kreem G. Aljayashi. Prevalence of Plasmid-mediated quinolone resistance genes among Ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from clinical isolates in Najaf, Iraq. Research Journal of Pharmacy and Technology. [Inernet], 2021. [Citado 2 junio 2024]; 14(4):1966-2. DOI: https://doi.org/10.52711/0974-360X.2021.00348.

Im SB, Gupta S, Jain M, Chande AT, Carleton HA, Jordan IK, Rishishwar L. Genome-Enabled Molecular Subtyping and Serotyping for Shiga Toxin-Producing Escherichia coli. Front. Sustain. Food Syst. [Internet], 2021. [Citado 2 Junio 2024]; 5:752873. DOI: https://doi.org/10.3389/fsufs.2021.752873.

Sousa Ferreira E. M, de Barbosa de Sousa G, Leite Barbosa K, Sousa Monteles K. de, Silva Gomes B. Os riscos que o uso indiscriminado de antibióticos pode ocasionar em crianças: uma revisão bibliográfica. RECIMA21 - Revista Científica Multidisciplinar. [Internet], 2021. [Citado 2 Junio 2024]; 2(11):e211901. DOI: https://doi.org/10.47820/recima21.v2i11.901.

Golovliov K, León D, Silva P, Falcón N. Medicación sin prescripción veterinaria en animales de compañía en Lima, Perú. Rev Inv Vet Perú. [Internet], 2021. [Citado 2 Junio 2024]; 32(5):e21343. DOI: http://dx.doi.org/10.15381/rivep.v32i5.21343.

Arias Negrete MF, Véliz Castro TI. Bacterial resistance to ciprofloxacin and nitrofurantoin due to indiscriminate use in patients with urinary symptoms. Revista Científica Arbitrada Multidisciplinaria, PENTACIENCIAS. [Internet], 2023. [Citado 2 Junio 2024]; 5(3):435-450. DOI: https://doi.org/10.59169/pentaciencias.v5i3.561.

Solís M.B, Romo S, Granja M, Sarasti JJ, Paz y Miño A & Zurita, J. Infección comunitaria del tracto urinario por Escherichia coli en la era de resistencia antibiótica en Ecuador. Metro Ciencia. [Internet], 2022. [Citado 2 Junio 2024]; 30(1):37-48. https://doi.org/10.47464/MetroCiencia/vol30/1/2022/37-48.

Ross J, Larco D, Colon O, Coalson J, Gaus D, Taylor K, Lee S. Evolución de la Resistencia a los antibióticos en una zona rural de Ecuador. Práctica Familiar Rural. [Internet], 2020. [Citado 2 Junio 2024];5(1). DOI: https://doi.org/10.23936/pfr.v5i1.144.

Rondon C, Garcia C, Krapp F, Machaca I, Olivera M, Fernández V, et ell. Antibiotic point prevalence survey and antimicrobial resistance in hospitalized patients across Peruvian reference hospitals. ELSEVIER, Journal of Infection and Public Health. [Internet], 2023, Diciembre. [Citado 2 Junio 2024]; 16(1), Pag 52-60. DOI: https://doi.org/10.1016/j.jiph.2023.10.030.

Vidoni GE, Pizarro NC, Giai M. Resistencia a ciprofloxacina en infecciones urinarias por Escherichia coli. Hig. Sanid. Ambient. [Internet], 2020. [Citado 2 Junio 2024]; 20(1):1829-1834. Disponible en: https://saludpublica.ugr.es/investigacion/revista-electronica/contenido/2020.

Mendieta-Tello Ivonne, Arnao-Noboa Adriana, Calderón-Robalino Diana, Gea-Izquierdo Enrique. Análisis retrospectivo de perfil microbiológico y resistencia antimicrobiana en infección urinaria pediátrica de hospitales públicos de Quito-Ecuador. Salud, Barranquilla [Internet]. 2023 Apr [cited 2024 June 02]; 39(1): 95-108. DOI: https://doi.org/10.14482/sun.39.01.614.589.

Ortiz F, weiler N, Álvarez M, Orrego V, Mrtínez J, Melgarejo N, et al. Mecanismos plasmídicos de resistencia a quinolonas, betalactámicos y colistina en Salmonella enterica. Paraguay 2020-2021. Mem. Inst. Investig. Cienc. Salud [Internet]. 2023, [cited 2024 June 02]; l.21(1), e21122313. DOI: https://doi.org/10.18004/mem.iics/1812-9528/2023.e21122313.

Valenzuela X, Hedman H, Villagomez A, Cardenas P, Eisenberg Joseph N.S, Karen Levy, et all. Distribution of blaCTX-M-gene variants in E. coli from different origins in Ecuador. Medicine in Microecology. [Internet], 2023 December. [cited 2024 June 02]; 18: 100092. DOI: https://doi.org/10.1016/j.medmic.2023.100092.

Carvajal B., E., Rueda G., E., Talavera R., M., Torres C., M., López V., D., & Vásquez R., M. C. Resistencia a antibióticos betalactámicos y quinolonas en Escherichia coli aislada de pollos broiler. Revista De Investigaciones Veterinarias Del Perú- [Internet], 2021, [cited 2024 June 02]; 32(2), e20012. DOI: https://doi.org/10.15381/rivep.v32i2.20012.

López-Velandia D, Carvajal-Barrera E, Rueda-Garrido E, Talavera-Rojas M, Vásquez M, Torres-Caycedo M. Isolated Escherichia coli resistance genes in broiler chicken. Rev. Mex. Cienc. Pecu. [Internet]. 4 de julio de 2022 [citado 2 de junio de 2024];13(3):584-95. Disponible en: https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/5627

Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023, 11, 2169. https://doi.org/10.3390/microorganisms11092169.

Cabrera Rodríguez LE, Díaz Rigau L, Díaz Oliva S, Carrasco Miraya A, Ortiz García G. Multirresistencia de Escherichia coli y Klebsiella pneumoniae provenientes de pacientes con infección del tracto urinario adquirida en la comunidad. Rev Cubana Med Gen Integr [Internet]. 2019 Mar [citado 2024 Jun 04] ; 35(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21252019000100006&lng=es.

Toribio Arias Lesdyth Jessica, Sevilla Andrade Carlos Raúl, Gonzales-Escalante Edgar. Marcadores de resistencia plasmídica a quinolonas qnr en aislamientos clínicos de enterobacterias productoras de betalactamasas CTX-M en Lima, Perú. Rev. perú. med. exp. Salud Publica [Internet]. 2019 Jun [citado 2024 Jun 04]; 36(2): 265-269. DOI: http://dx.doi.org/10.17843/rpmesp.2019.362.3960.

Iman Y, Rayane R, Marwan O, Hassan M, Fouad D, Monzer Hamze. Plasmid-mediated quinolone resistance: Mechanisms, detection, and epidemiology in the Arab countries. Infection, Genetics and Evolution. [Internet], 2019 December, [citado 2024 Jun 04]; 76, 104020. DOI: https://doi.org/10.1016/j.meegid.2019.104020

Descargas

Publicado

2024-06-20

Cómo citar

1.
Chiluisa-Guacho CV, Gómez-Martínez N, Vilema-Vizuete GE, Dutra-Asensi M. Primer reporte de genes qnrB19 y aac(6’)-Ib-cr en aislados de Escherichia coli resistente a ciprofloxacino en Ecuador. Gac méd estud [Internet]. 20 de junio de 2024 [citado 18 de noviembre de 2024];5(2):e422. Disponible en: https://revgacetaestudiantil.sld.cu/index.php/gme/article/view/422

Número

Sección

Artículos originales

ARK