Immune-mediated cells of systemic inflammation in patients with COVID-19

Authors

Keywords:

systematic inflammation, immune cells, COVID-19 and SARS-CoV-2

Abstract

SAR-CoV-2 is a type of coronavirus that causes a disease called COVID-19, which has been the cause of a global pandemic. About 80% of those infected are asymptomatic and the remainder are mild cases with non-specific symptomatology such as malaise, fever, myalgia, headache, rhinorrhoea, dry cough and watery stools. An elevated systemic immune-inflammatory index (IIIS) is a predictor of mortality from severe COVID-19. In published studies, 49.1% of those who died had lung involvement greater than 75%, and in survivors this occurred in 19.6% (RR: 1.54, p=0.001). Importantly, it is not known exactly how the multiple pathways of responses involved in the elimination of infected cells correlate.

Immune responses are highly involved in both innate and adaptive infection. There is binding of SARS-CoV-2 to ACE2-expressing cells, such as alveolar type 2 cells. The clinical manifestations produced by SARS-CoV-2 include some intervening immune cells such as NK cells, B lymphocytes, CD4+ and CD8+ T lymphocytes in patients with moderate and severe COVID-19 conditions. This research consists of an observational, descriptive and retrospective study focusing on the search for information in a reliable database; it is a literature review, systemic and meta-analysis on immune cells mediating systemic inflammation in patients with COVID-19. Thus, the main objective of this review is to expose the immune characteristics of the different responses associated with inflammation.

Downloads

Download data is not yet available.

References

Jara Aquino, Enrique Wilfredo. "Índice Inmunidad-Inflamación Sistémica elevado como Predictor de Mortalidad por COVID-19 severo." (2023). Disponible en: https://revistamedicinainterna.net/index.php/spmi/article/view/760

Kaivola, Juha et al. “Inflammasomes and SARS-CoV-2 Infection.” Viruses vol. 13,12 2513. 14 Dec. 2021, doi:10.3390/v13122513. Disponible en: https://www.mdpi.com/1999-4915/13/12/2513

Chaparro, Nataniel-A., and Alex-O. Franco. "Aspectos clínicos e inmunológicos de la infección por SARS-CoV-2." Revista de la Universidad Industrial de Santander. Salud 52.3 (2020): 295-309. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-08072020000300295

Carpio, Llumiugxi, and Jenny Amparo. Biología molecular de SARS-CoV-2 como determinante de las respuestas inmunitarias del huésped ante la infección. BS thesis. Quito: UCE, 2022. Disponible en: https://www.dspace.uce.edu.ec/bitstreams/3e496962-16e0-453d-adc7-54288e6127f4/download

Vasco, Samantha, and Dafne Salas-Cuadros. "Acercamiento inmunológico y molecular de COVID-19: autoanticuerpos." INSPILIP. Revista Ecuatoriana de Ciencia, Tecnología e Innovacion en Salud Pública 7.21 (2023). Disponible en: https://www.inspilip.gob.ec/index.php/inspi/article/view/349

Agashe, Ruchi P et al. “JAK: Not Just Another Kinase.” Molecular cancer therapeutics vol. 21,12 (2022): 1757-1764. doi:10.1158/1535-7163.MCT-22-0323. Disponible en: https://aacrjournals.org/mct/article/21/12/1757/711140/JAK-Not-Just-Another-KinaseJanus-Kinase

Attiq, Ali et al. “The triumvirate of NF-κB, inflammation and cytokine storm in COVID-19.” International immunopharmacology vol. 101,Pt B (2021): 108255. doi:10.1016/j.intimp.2021.108255. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1567576921008912

Qin, Zhongnan et al. “Endothelial cell infection and dysfunction, immune activation in severe COVID-19.” Theranostics vol. 11,16 8076-8091. 6 Jul. 2021, doi:10.7150/thno.61810. Disponible en: https://www.researchgate.net/publication/353509660_Endothelial_cell_infection_and_dysfunction_immune_activation_in_severe_COVID-19

Pérez-Jeldres, Tamara et al. “Targeting Sphingosine-1-Phosphate Signaling in Immune-Mediated Diseases: Beyond Multiple Sclerosis.” Drugs vol. 81,9 (2021): 985-1002. doi:10.1007/s40265-021-01528-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33983615/

Xu, Gang et al. “SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation.” Cellresearch vol. 31,12 (2021): 1230-1243. doi:10.1038/s41422-021-00578-7. Disponible en: https://www.nature.com/articles/s41422-021-00578-7

Aletaha, Daniel et al. “Consensus statement on blocking interleukin-6 receptor and interleukin-6 in inflammatory conditions: an update.” Annals of therheumaticdiseases vol. 82,6 (2023): 773-787. doi:10.1136/ard-2022-222784. Disponible en: https://www.nature.com/articles/s41422-021-00578-7

Gruber, Conor N et al. “Complex Autoinflammatory Syndrome Unveils Fundamental Principles of JAK1 Kinase Transcriptional and Biochemical Function.” Immunity vol. 53,3 (2020): 672-684.e11. doi:10.1016/j.immuni.2020.07.006. Disponible en: https://www.sciencedirect.com/science/article/pii/S1074761320303137

Sengupta, Pallav, and Sulagna Dutta. “N-acetyl cysteine as a potential regulator of SARS-CoV-2-induced male reproductive disruptions.” Middle East FertilitySocietyjournal vol. 27,1 (2022): 14. doi:10.1186/s43043-022-00104-8. Disponible en: https://mefj.springeropen.com/articles/10.1186/s43043-022-00104-8

Neufeldt, Christopher J et al. “SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB.” Communicationsbiology vol. 5,1 45. 12 Jan. 2022, doi:10.1038/s42003-021-02983-5. Disponible en: https://www.nature.com/articles/s42003-021-02983-5

Berthelot, Jean-Marie et al. “Lymphocyte Changes in Severe COVID-19: Delayed Over-Activation of STING?.” Frontiers in immunology vol. 11 607069. 1 Dec. 2020, doi:10.3389/fimmu.2020.607069. Disponible en: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.607069/full

Julià, Antonio et al. “Targeting of the CD80/86 proinflammatory axis as a therapeutic strategy to prevent severe COVID-19.” Scientific reports vol. 11,1 11462. 1 Jun. 2021, doi:10.1038/s41598-021-90797-0. Disponible en: https://www.nature.com/articles/s41598-021-90797-0

Evans, Paul C et al. “Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science.” Cardiovascularresearch vol. 116,14 (2020): 2177-2184. doi:10.1093/cvr/cvaa230. Disponible en: https://cris.maastrichtuniversity.nl/en/publications/endothelial-dysfunction-in-covid-19-a-position-paper-of-the-esc-w

de Sousa, AntônioKleiton et al. “SARS-CoV-2-mediated encephalitis: Role of AT2R receptors in the blood-brain barrier.” Medical hypotheses vol. 144 (2020): 110213. doi:10.1016/j.mehy.2020.110213. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0306987720314754

Hasegawa, Takehiro et al. “Th1 cytokine endotype discriminates and predicts severe complications in COVID-19.” “Th1 cytokine endotype discriminates and predicts severe complications in COVID-19.” Europeancytokinenetwork vol. 33,2 (2022): 25-36. doi:10.1684/ecn.2022.0477. Disponible en: https://link.springer.com/article/10.1684/ecn.2022.0477

van der Sluis, Renée M et al. “TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARS-CoV-2 infection.” The EMBO journal vol. 41,10 (2022): e109622. doi:10.15252/embj.2021109622. Disponible en: https://au-staging.elsevierpure.com/da/publications/tlr2-and-tlr7-mediate-distinct-immunopathological-and-antiviral-p

Kumar, V. “Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets.” International immunopharmacology vol. 89,Pt B (2020): 107087. doi:10.1016/j.intimp.2020.107087. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1567576920329179

Conti, P et al. “IL-1 induces throboxane-A2 (TxA2) in COVID-19 causing inflammation and micro-thrombi: inhibitory effect of the IL-1 receptor antagonist (IL-1Ra).” Journal of biological regulators and homeostatic agents vol. 34,5 (2020): 1623-1627. doi:10.23812/20-34-4EDIT-65. Disponible en: https://www.researchgate.net/publication/343427253_IL-1_induces_throboxane-A2_TxA2_in_COVID-19_causing_inflammation_and_micro-thrombi_inhibitory_effect_of_the_IL-1_receptor_antagonist_IL-1Ra

Conti, P et al. “Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19.” Journal of biologicalregulators and homeostaticagents vol. 34,5 (2020): 1629-1632. doi:10.23812/20-2EDIT. Disponible en: https://www.biolifesas.org/EN/10.23812/20-2EDIT

Karki, Rajendra et al. “Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes.” bioRxiv : the preprint server for biology 2020.10.29.361048. 13 Nov. 2020, doi:10.1101/2020.10.29.361048. Preprint.. Disponible en: https://www.biorxiv.org/content/10.1101/2020.10.29.361048.full

Sancho Ferrando, Elena et al. “Soluble TNF receptors predict acute kidney injury and mortality in critically ill COVID-19 patients: A prospective observational study.” Cytokine vol. 149 (2022): 155727. doi:10.1016/j.cyto.2021.155727. Disponible en: https://www.sciencedirect.com/science/article/pii/S1043466621003161

Published

2024-07-30

How to Cite

1.
León-Pallasco DA, Sunta-Ruiz ML, Miranda-Solis EM. Immune-mediated cells of systemic inflammation in patients with COVID-19. Gac méd estud [Internet]. 2024 Jul. 30 [cited 2024 Sep. 30];5(2):e488. Available from: https://revgacetaestudiantil.sld.cu/index.php/gme/article/view/488

Issue

Section

Original articles

ARK