Applications of artificial intelligence in intensive care medicine

Authors

Keywords:

Artificial intelligence, Patient safety, Intensive care units

Abstract

Introduction: intensive care medicine is a specialty that offers comprehensive and specialized medical care to patients with critical or life-threatening conditions. The artificial intelligence has revolutionized critical patient safety by providing innovative tools that optimize care and reduce risks in intensive care. Objective: to describe the fundamental advances of artificial intelligence in intensive medicine. Method: a bibliographic review was carried out in the period from August to October 2024. Original articles, case reports and open access systematic reviews were consulted in peer-reviewed academic publications. The SciELO, Regmed, Dialnet, PubMed, Science Direct, Web of Science and MedlinePlus databases were reviewed. AND and OR were used as Boolean operators. Development: in intensive care, most artificial intelligence models focus on mortality prediction and risk stratification. The application of robotics in the medical field is extensive with countless functions. It allows identifying risk patterns such as agitated patients or those at risk of falls through continuous monitoring and analysis of sedation, brain activity and muscle relaxation. Conclusions: advances in artificial intelligence have revolutionized intensive care medicine by allowing continuous monitoring of vital signs and prediction of complications, facilitating early and personalized interventions.

Downloads

Download data is not yet available.

References

Giovanni-Perdomo R. Medicina Intensiva y las Unidades de Cuidados Intensivos [internet]. 2019 [citado 8 oct 24]. Disponible en: https://revistamedicahondurena.hn/assets/Uploads/Vol60-1-1992.pdf#page=48

Núñez-Reiz A. Big Data Analysis y Machine Learning en medicina intensiva. Med Intensiva. 2018. https://doi.org/10.1016/j.medin.2018.10.007

Sandfort V, Johnson AEW, Kunz LM, Vargas JD, Rosing DR. Prolonged elevated heart rate and 90-day survival in acutely ill patients: Data from the MIMIC-III database. J Intensive Care Med. 2018, http://dx.doi.org/10.1177/0885066618756828885066618756828

Véliz-Martínez PL. Evolución histórica y perspectivas futuras de la Medicina Intensiva y Emergencia como especialidad en Cuba [internet]. 2014 [citado 8 oct 24]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21412014000300018

Barea-Mendoza JA. Perspectivas actuales sobre el uso de la inteligencia artificial en la seguridad del paciente crítico [internet]. 2024 [citado 8 oct 24]. Disponible en: https://scholar.google.es/scholar?start=0&q=related:QIXa9i9vWaAJ:scholar.google.com/&hl=es&as_sdt=0,5#d=gs_qabs&t=1728422206911&u=%23p%3DQIXa9i9vWaAJ

McLennan S, Shaw D, Celi LA. The challenge of local consent requirements for global critical care databases. Intensive Care Med. 2018. Disponible en: http://dx.doi.org/10.1007/s00134-018-5257

Waudby-Smith IER, Tran N, Dubin JA, Lee J. Sentiment in nursing notes as an indicator of out-of-hospital mortality in intensive care patients. PLoS One. 2018; 13:e0198687

Lehman J, Clune J, Misevic D, Adami C, Altenberg L, Beaulieu J, Bentley PJ, Bernard S, Beslon G, Bryson DM, et al. The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artifcial life research communities. Artif Life. 2020;26(2):274–306

Cabral P, González CJ. Avances y desafíos en el uso de la inteligencia artificial en medicina. Salud Mil [Internet] 2024 [citado 6 oct 24]; 43(1):e801. Disponible en: https://revistasaludmilitar.uy/ojs/index.php/Rsm/article/view/417

Komorowski M. Artificial intelligence in intensive care: are we there yet? Intensive Care Med [Internet]. 2019 [cited 6 oct 24]; 45(9):1298–300. Available from: http://link.springer.com/10.1007/s00134-019-05662-6

Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals [Internet]. 2020 [cited 6 oct 24]; 139:110059. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960077920304562

Oh S, Kim JH, Choi S-W, Lee HJ, Hong J, Kwon SH, et al. Physician Confidence in Artificial Intelligence: An Online Mobile Survey. J Med Internet Res [Internet]. 2019 [cited 6 oct 24]; 21(3):e12422. Available from: http://www.jmir.org/2019/3/e12422/

Michard F, Teboul JL. Predictive analytics: beyond the buzz. Ann Intensive Care [Internet]. 2019 [cited 6 oct 24]; 9(1):46. Availablefrom: https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-019-05249

Yoon JH, Mu L, Chen L, Dubrawski A, Hravnak M, Pinsky MR, et al. Predicting tachycardia as a surrogate for instability in the intensive care unit. J Clin Monit Comput [Internet]. 2019 [cited 6 oct 24]; 33(6):973–85. Available from: http://link.springer.com/10.1007/s10877-019-00277-0

Maassen O, Fritsch S, Palm J, Deffge S, Kunze J, Marx G, et al. Future Medical Artificial Intelligence Application Requirements and Expectations of Physicians in German University Hospitals: Web-Based Survey. J Med Internet Res [Internet]. 2021 [cited 6 oct 24]; 23(3):e26646. Available from: http://www.jmir.org/2021/3/e26646/

He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med [Internet]. 2019 [cited 6 oct 24]; 25(1):30–6. Available from: http://www.nature.com/articles/s41591-018-0307-0

Ocampo-Quintero N, Vidal-Cortés P, Del Río-Carbajo L, Fernández-Riverola F, Reboiro-Jato M, Glez-Peña D, et al. Enhancing sepsis management through machine learning techniques: A review Med Intensiva. 2022; 46:140---56

Saqib M, Iftikhar M, Neha F, Karishma F and Mumtaz H. Artificial intelligence in critical illness and its impact on patient care: a comprehensive review. Front. Med. 2023. 10:1176192. doi: 10.3389/fmed.2023.1176192

Singhal M, Gupta L, Hirani K A. A Comprehensive Analysis and Review of Artificial Intelligence in Anaesthesia. 2023, 15(9), e45038. https://doi.org/10.7759/cureus.45038

Vagvolgyi BP, Khrenov M, Cope J, Deguet A, Kazanzides P, Manzoor S, Taylor RH, Krieger A et al. Telerobotic Operation of Intensive Care Unit Ventilators. Front Robot AI 2021, 8:612964. 10.3389/frobt.2021.612964.

Van-Kammen K, Boonstra AM, Van der-Woude LH, Visscher C, Reinders-Messelink HA, Den-Otter R, et al. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disability and Rehabilitation 2020, 42(21):2977-2985. 44.

Baronchelli F, Zucchella C, Serrao M, Intiso D, Bartolo M. The effect of robotic assisted gait training with Lokomat® on balance control after stroke: systematic review and meta-analysis. Frontiers in Neurology 2021, 12:1073.

Monteiro M, Newcombe VFJ, Mathieu F, Adatia K, Kamnitsas K, Ferrante E, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digital Health. 2020 2:e314–22. Doi: 10.1016/S2589-7500(20)30085-6

Kobayashi N, Shiga T, Ikumi S, Watanabe K, Murakami H, Yamauchi M, et al. Semiautomated tracking of pain in critical care patients using artificial intelligence: a retrospective observational study. Sci Rep. 2021, 11:5229. doi: 10.1038/s41598-021-84714-8

Liu S, Wright AP, Patterson BL. Using AI-generated suggestions from ChatGPT to optimize clinical decision support. J. Am. Med. Inform. Assoc. 2023 Doi: 10.1093/jamia/ocad072.

Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019 [cited6oct24]; 381(20):1909–1917. Doi: 101056/nejmoa1901183

Published

2025-01-03

How to Cite

1.
Gálvez-Vila RM, Espinosa-Goire Y, Padilla-González JM, Benavides-Jiménez A. Applications of artificial intelligence in intensive care medicine . Gac méd estud [Internet]. 2025 Jan. 3 [cited 2025 Jan. 10];6(1):e532. Available from: https://revgacetaestudiantil.sld.cu/index.php/gme/article/view/532

Issue

Section

Bibliographic reviews

ARK

Most read articles by the same author(s)

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
11%
33%
Days to publication 
79
145

Indexed in

Editor & editorial board
profiles
Academic society 
Gaceta Médica Estudiantil
Publisher 
Universidad de Ciencias Médicas de Guantánamo